5mDeRWTIB (Gast)
| | Menon"3,4,5 àŽàŽš àŽš àŽµ àŽµàŽ¶àŽ àŽàŽ³ àŽàŽ¯ àŽµàŽ° àŽš àŽš àŽ®àŽ àŽ àŽ€ àŽ° àŽ àŽ£àŽ€ àŽ€ àŽš àŽ± Semi Perimeter 6 àŽàŽ£àŽ² àŽ² (3^3+4^3+5^3 = 6^3)6,8,10 àŽàŽš àŽš àŽµ àŽµàŽ¶àŽ àŽàŽ³ àŽàŽ¯ àŽµàŽ° àŽš àŽš àŽ®àŽ àŽ àŽ€ àŽ° àŽ àŽ£àŽ€ àŽ€ àŽš àŽ± Semi Perimeter 12 àŽàŽ£àŽ² àŽ² (6^3+8^3+10^3 = 12^39,12,15 àŽàŽš àŽš àŽµ àŽµàŽ¶àŽ àŽàŽ³ àŽàŽ¯ àŽµàŽ° àŽš àŽš àŽ®àŽ àŽ àŽ€ àŽ° àŽ àŽ£àŽ€ àŽ€ àŽš àŽ± Semi Perimeter 18 àŽàŽ£àŽ² àŽ² (9^3+12^3+15^3 = 18^3)àŽ àŽ àŽ£ àŽš àŽš àŽ¬àŽš àŽ§àŽ€ àŽ€ àŽš àŽàŽš àŽ€ àŽ àŽ àŽ² àŽàŽ° àŽ àŽ°àŽ£ àŽšàŽ² àŽ àŽ àŽµ àŽš àŽªàŽ± àŽ± àŽ® àŽàŽš àŽš àŽ° àŽž àŽ¶àŽ¯ àŽàŽ£ àŽ "May I approach the sottauiin as follows:3, 4 and 5 is a Pythagorean triplet.3^3 +4^3 + 5^3 = 27 + 64 + 125=216Also [(3+4+5)/2]^3 = 6^3 =216It proves that 3^3 +4^3 + 5^3 = [(3+4+5)/2]^3We notice that each successive Pythagorean triplets that you have mentioned in your post is an integral multiple of the triplet (3,4,5) and hence a general Pythagorean triplet in your post can be expressed as (3k, 4k, 5k)where k= 1, 2, 3, 4,.........Now (3k)^3 + (4k)^3 + (5k)^3 =k^3(3^3 +4^3+ 5^3)= k^3 [(3+4+5)/2]^3 by substitution from the previous relationHence, (3k)^3 + (4k)^3 + (5k)^3 =k^3 [(3+4+5)/2]^3 = [k(3+4+5)/2]^3 = [(3k+4k+5k)/2]^3i.e (3k)^3 + (4k)^3 + (5k)^3 = [(3k+4k+5k)/2]^3In the above relation put k=1, 2, 3, 4, 5..... Then we get all those relations mentioned in your post.This is a special property of Pythagorean triplets of the form (3k,4k,5k)If you examine the Pythagorean triplet (5,12,13)we see that this property namely sum of cubes equals cube of semi-perimeter does not hold. |
bJai0JSlR (Gast)
| | Thanks for your personal marvelous posting! I truly enjoyed reading it, you could be a great author.I will make certain to bookmark your blog and delinitefy will come back someday. I want to encourage you to definitely continue your great job, have a nice afternoon! |